フィリピン、ラロ貝塚群出土遺物の AMS¹⁴C 年代と出土人骨の食性分析 三原 正三¹¹, 奥野 充²¹, 小川 英文³¹, 田中 和彦⁴¹, 中村 俊夫⁵¹, 小池 裕子¹¹

 九州大学大学院比較社会文化学府 〒810-0044 福岡市中央区六本松 4-2-1 TEL&FAX: 092-726-4769, E-mail: cs200027@scs.kyushu-u.ac.jp

- 2) 福岡大学理学部 〒814-0180 福岡市城南区七隈 8-19-1
- 3) 東京外国語大学 〒183-8534 東京都府中市朝日町 3-11-1 E-mail: hide@fs.tufs.ac.jp
- 4) 敬愛大学 〒285-8567 千葉県佐倉市山王 1-9
- 5) 名古屋大学年代測定総合研究センター 〒464-8602 名古屋市千種区不老町

1. はじめに

フィリビン、ルソン島の北東部を南北に流れる Cagayan 河は、河川面積が 34.5km²とフィリピ ン有数の河川であり、その河口から 50km までの下流域には、貝塚の数と規模において東南アジ ア有数の貝塚群が発見されている(東南アジア考古学会, 1994)。この貝塚群は、ラロ(以下 Lal-lo とする)町を中心に分布しているため、Lal-lo貝塚群と呼ばれている(図1)。筆者らは、フィリ ピンの先史文化を知る上での重要な手がかりとなる貝塚遺跡から出土した人骨、獣骨および炭化 物の年代測定を進め、貝塚群の編年を試みた。同時に、出土人骨に関して、安定同位体による食 性分析を試みた。

また、ルソン島北部では現在も土器が作られている黒色の土器は、焼成した土器を熱いうちに 籾殻の中に入れて炭素を吸着させ、黒く着色する技法が用いられている。Lal-lo 貝塚群で出土す る黒色土器も同様の技法で作成されたとするならば、作成時の炭素を多く含有し、年代測定用の 試料として使用できると考えられる。そこで今回、Lal-lo 貝塚群から採取した土器片について、 炭素含有量の分析をおこない、年代測定試料としての可能性を調べた。

<Cagayan 河下流域の貝塚群について>

Lal-lo 貝塚群は、河口から 10km 遡った地点から始まり、50km 地点までの間の Cagayan 河両岸 に位置している。現在までに知られている貝塚遺跡は 24 カ所で、その規模は直径 10m 前後の小 さなものから長さ 500m の大きなものまで様々である。貝塚の貝種は主として Cagayan 河に生息 する汽水性二枚貝の Kabibe: *Batissa Childreni* で構成されている(小川, 1998)。

貝塚遺跡群はその立地条件によって、(1) 標高 7~10m の河岸段丘上の遺跡、(2) 標高 50m の石灰岩台地上の遺跡、(3) 河岸から 1~2 km 内陸の低地の遺跡、の 3 つに大別されている(小川, 2000)。

(1) 岸段丘上の遺跡

Cagayan 河に面した標高 7~10m の高さに位置する貝塚で、規模の大きなものが多い。最大の Catayauan 貝塚では長さ 500m、幅 100m、深さ 2m にもおよぶ。出土遺物としては、厚手の黒色土器と中心として、中国陶磁器、磨製有段石斧が出土している(青柳, 1991)。

(2) 灰岩台地上の遺跡

Cagayan 河に面した標高 50m の石灰岩台地上に位置する貝塚である。このうち Magapit 貝 塚からは、この貝塚からのみ見つかっている有文赤色土器があり、また磨製有段石斧、石 製・土製・骨製装飾品等が出土している(小川, 1998)。

(3) 内陸低地の遺跡

Cagayan 河の河岸から約 1~2km 離れた内陸部の低湿地に位置する。人工遺物は剥片石器が 確認されているのみで、土器出現以前に形成された貝塚であると考えられている(小川, 1997)。

これらの他に、石灰岩丘陵上の Mabangog 洞穴がある。これは河岸から 4km、標高 40km の二 次林内に位置し、洞穴内に貝塚のものと同種の貝が堆積している。貝層中からはチャート製・安 山岩製の剥片石器、無文赤色土器が出土している(Ogawa, 1999)。

フィリピンの先史時代は、出土遺物から、先鉄器(新石器)時代、鉄器時代、陶磁器時代に大 別されており、Lal-lo 貝塚群においては石灰岩台地上の貝塚は後期先鉄器時代、河岸段丘上の貝 塚は鉄器時代に属すると考えられている。また、出土する土器は、赤色土器と黒色土器および褐 色土器に大別される。赤色土器は後期先鉄器(新石器)時代、黒色土器は 2000 年前から 1000 年 前まで続く鉄器時代のものと考えられている。赤色土器は、有文赤色土器が Magapit 貝塚の貝層 から、無文赤色土器は、Mabangog 洞穴の貝層と河岸段丘上貝塚の貝層下シルト層中から出土し ている。黒色土器は、有文、無文ともに河岸段丘上貝塚の貝層中から出土している。土器編年に ついては現在、有文赤色→無文赤色→有文黒色→無文黒色という編年が想定されている。また、 地表面近くの貝層から出土する褐色土器は近年まで使用されていたもので、14 世紀以降の中国・ タイ、チャンパの陶磁器片とともに出土する (小川, 1998)。

2. 分析試料

年代測定用試料として、ラロ貝塚群の各貝塚から出土した人骨、動物骨、炭化木片試料について、フィリピン国立博物館の考古学部門から提供を受けた(表 1)。人骨試料は Catugan 貝塚 Dombrique 地点、San Lorenzo 貝塚 Siliban 地点、Santa Maria 貝塚 Irigayen 地点、Catayauan 貝塚 Sison 地点から各1点、Catayauan 貝塚 Conciso 地点から3点の計7点である。動物骨試料は Catayauan 貝塚 Conciso 地点から8点、炭化物試料は Santa Maria 貝塚から出土した6点である。

また、安定同位体分析用試料としては、上記の人骨7点および Fabrica 貝塚 Pasqua 地点から出 土した人骨1点の計8点を使用した。

土器の炭素含有量測定に使用した試料を表 2 に示す。Magapit 貝塚から有文赤色土器 5 点、 Mabangog 貝塚から無文赤色土器 4 点、Bangag I 貝塚から有文黒色土器 6 点の計 15 点を使用した。 いずれも貝塚から表面採取をおこなった土器片であり、その多くは内部に黒色部分を有する。ま た、比較対照試料として、ルソン島北部で現在も土器づくりが行われている San Nicolas 地方で採 取した黒色の土器片を使用した。

Catayauan 貝塚:この貝塚群最大の貝塚で、深さ 2m、幅 100m、長さ 500m にわたって貝塚が 形成されており、現在も多くの貝が採取されている。この貝塚では Sison 地点、Conciso 地点の 2 カ所の発掘がおこなわれた。出土遺物は黒色土器の他、人骨、動物骨、魚骨、炭化物等が出土している。Sison 地点の人骨は貝層第2層中の墓坑(地表面下 30~60cm)より出土した。Conciso 地点の8点の動物骨は同一グリッドで地表面下 35~146cmの貝層の各地点から、人骨3点はその下の墓葬址(地表面下 148~200cm)から出土した。2号墓は動物骨と同一グリッド、1号墓と3号墓はその北側のグリッドで、3号墓は1号墓の上部に位置している。副葬品としては、1号墓の人骨は無文黒色土器、2号墓の人骨は鉄製ナイフをともなっている。

Catugan 貝塚: Catayauan 貝塚の対岸に位置し、幅 30m、長さ 100m ほどの貝塚で、発掘地点は 河岸の崖面の部分である。出土遺物は黒色土器、動物骨、魚骨、炭化物等の他、地表面下 20~60cm の貝層第 2 層中から人間の上腕骨、下顎骨、大腿骨が出土しているが、墓坑は確認されていない (田中, 1997)。またこの貝塚において、有文黒色土器から無文黒色土器へという変化が層位的に

Santa Maria 貝塚: Catayauan 貝塚の南に位置している。上記の2貝塚と異なり、1kmの範囲内 で直径 100m、深さ 1m ほどの地点貝塚が点在しており、発掘され Irigayen 地点はそのひとつであ る。出土遺物は黒色土器、動物骨、魚骨、炭化物等の他、地表面下 80~102cm のシルト層中から 墓坑が検出されている。人骨には無文黒色土器、青銅製の小型の甕、ガラス製ビーズが伴出(de la Torre, 2000)。また、炭化物試料のうち、2点は貝層中、4点はシルト層中から出土したものを 使用した。

San Lorenzo 貝塚: Catugan 貝塚の南側に位置する、長さ 50m、幅 50m の貝塚である。出土遺物は黒色土器、動物骨、魚骨、炭化物の他、鉄滓、陶磁器などがある。発掘をおこなった Siliban 地点はかつて墓域であったと考えられており、人骨をともなう甕棺墓、土壙墓が発見された。分析試料とした人骨は、地表面下 80~100cm の土壙墓から出土した伸展葬人骨であった(田中, 1998)。

3. 分析方法

確認されている。

3-1. 前処理

骨試料に関しては、骨中の硬タンパクであるコラーゲンを用いた。骨試料の調製法を図2に示 す。主として酸に不溶性のコラーゲンを回収することを目的とし、小池ほか(1988)、有田ほか (1990)、Chisholm and Koike (1996)、武藤(2000)等の方法に基づいて検討・設定した。骨試 料調整法には、以下の8段階がある。

- (1) 試料選別:保存状態の良い試料の中から、緻密質の厚い、大きな塊を選んだ。保存状態は、
 色、質量、硬さ、光沢等から判断した。また海綿質には土が入りこみやすく、土壌の有
 機物による汚染を受けやすいため、なるべく用いないようにしながら、500mg~1g を選別した。
- (2) 試料表面のクリーニング:デンタルドリル、ピンセット等で試料表面の汚れや樹木のひげ 根等を除去した。内部に汚染が浸透している場合は 2 つに割り、内部の汚染部分も除去 した。
- (3) 超音波洗浄:次に試料を蒸留水で2分間の超音波洗浄を繰り返し、表面の細かな汚れを除

去した。大きな試料は適度な大きさに砕き、超音波洗浄を 3~5 回ほど繰り返した。

- (4) 凍結乾燥・粉砕:これを凍結乾燥した後、ステンレス製の乳鉢で粉砕し、粉末にした。
- (5) アルカリ処理: 試料粉末に 0.1N の NaOH 水溶液を加えて、その後遠心して上澄みを除去す るという操作を、上澄みの色が変わらなくなるまで繰り返した。これにより、試料粉末 表面のフミン酸などのアルカリ可溶成分を除去した。
- (6) 脱灰:次に 0.1Nの HCI 水溶液を加えてローテータで 30 分ほど攪拌し、同様の操作によって脱灰し、繊維状のコラーゲンを抽出した。
- (7) アルカリ処理:脱灰完了後、0.01N 未満の NaOH 水溶液に変え、(5) と同様の操作で再度 アルカリ処理をおこない、コラーゲンに混入したアルカリ可溶成分を除去した。
- (8)洗浄・凍結乾燥:NaOH 水溶液を捨て、蒸留水でコラーゲンを洗浄した。洗浄後、蒸留水 を捨て、約 24 時間凍結乾燥し、試料をスクリュー管瓶に入れて保存した。

以上がコラーゲン抽出の方法であるが、非常に保存状態の良い、大きな骨試料に関しては、表面の汚れを除去した後、デンタルドリルで試料粉末を 300~500mg 削り取って使用した。なお、試料によってはアルカリ処理の方法が若干異なるものがある。

一方、炭化物に関しては、ひげ根や砂粒等を取り除いた後、蒸留水中で超音波洗浄をおこない、 1NのHCI溶液とNaOH溶液を用いて酸-アルカリ-酸処理(以下AAA処理とする)をおこなった。

土器片試料に関しては、デンタルドリルで表面の汚れを削り落とした後、デンタルドリルで削 り、もしくは金槌、乳鉢で粉砕して得た粉末に同様の AAA 処理をおこなった。また、AAA 処理 による炭素の減少を調べるため、AAA 処理前の粉末も分取して測定した。

3-2. ANCA-mass による C/N 比測定

得られたコラーゲンを約 0.8mg 秤量して錫製のカプセルに詰め、標準試料のグリシンとともに ANCA-mass (Automated Nitrogen and Carbon Analysis mass spectrometry, Europa Scientific社)を用 いて分析をおこなった。各試料につき 2回測定をおこない、分析結果はそれらの平均値を使用し た。分析結果のうち、炭素、窒素含有量から C/N 比を算出し、コラーゲンの精製状況を確認した。 現生の象牙試料から得られたコラーゲン試料の分析結果 (Ishibashi et al., 1999)より算出した C/N 比の標準値は 2.8 となっており、遺跡から出土した骨試料のコラーゲンは、C/N 比が 2.7~3.3 程度 のものを分析試料として使用するのが望ましいと考えられる。

3-3. CO2精製

次に、前処理を終えた試料をバイコール管に酸化銅とともに(コラーゲン試料は、酸化銅、銀線とともに)真空ラインを用いて封入した。コラーゲンの量は、ANCA-mass で得られた炭素含 有率から、炭素量で 2mg 分を使用した。その後、電気炉を用いて加熱した後、生じた気体を真空 ラインを用いて、液体窒素(-196℃)、液体窒素で冷却したエタノール(-110℃)、および液体窒 素で凍結させたペンタン(-130℃)を冷媒として精製し CO₂ガスを得た。

3-4. 年代測定

精製された CO₂試料を、名古屋大学年代測定総合研究センターにおいて水素還元法(Kitagawa et al., 1993)によるグラファイト化をおこない、これをタンデトロン加速器質量分析計

(Model-4130 AMS, HVEE) (Nakamura et al., 2000) を用いて ¹⁴C 年代測定をおこなった。¹⁴C 濃度 の標準体として NBS シュウ酸 (HOx II) を用いた。なお、試料の同位体分別効果を補正するた め、得られた CO₂の δ^{13} C 値を気体用質量分析計 (Finnigan MAT 社製, MAT-252) により測定し た (中村, 1995b)。

4. 結果

4-1. 年代測定結果

ANCA-mass による測定結果を表 1 に示す。人骨コラーゲンの精製状況を確認するのに用いた C/N 比は、Catugan 貝塚の人骨が 2.9、Catayauan 貝塚及び Santa Maria 貝塚の人骨 3 点が 3.0 であ った。Catayauan 貝塚 Conciso 地点の動物骨の C/N 比は 2.8~3.0 であった。コラーゲンの標準的な C/N 比は 3.2±0.5 であり (Hare and von Endt, 1990)、現生の象牙試料から得られたコラーゲンの C/N 比の平均値は 2.8 となっている。このことから、コラーゲンの精製状態はほぼ十分であると 考えられる。

¹⁴C 年代は、Libby の半減期 5568 年を用いて算出した。測定誤差は ¹⁴C の総計数に基づく統計 誤差であり、 $\pm 1\sigma$ で示した。また、これらの ¹⁴C 年代を、コンピュータ・プログラム CALIB4.3 (Stuiver et al., 1998) により、暦年代($\pm 2\sigma$) に較正した。

¹⁴C年代測定の結果を表1に示す。人骨に関しては、Catayauan 貝塚Sison地点が1090~970 cal BP、 Conciso 地点が1395~1175 cal BP、Catugan 貝塚が1875~1735 cal BP、Santa Maria 貝塚が1570~1510 cal BP 、San Lorenzo 貝塚が1820~1695 cal BP という年代がえられた。以下に、各貝塚の測定結 果を示す。

Catayauan 貝塚 Conciso 地点:貝層深度 35~146cm の各層位から出土した動物骨 8 点から得ら れた¹⁴C 年代は、深さ 35cm および 70cm から 1070~960 cal BP、深さ 80cm~146cm から 1190~1055 cal BP という年代を示し、前者、後者ともに誤差範囲内でほぼ一致した。148cm~165cm の貝層最 下層および 178~120cm の貝層直下シルト層中から出土した人骨 3 点から、1395~1175 cal BP とい う¹⁴C 年代がえられた。動物骨および 3 点の人骨の年代は遺構の深さと矛盾しない値を示した。

Santa Maria 貝塚: 貝層中の炭化物 2 点から 1420~1305 cal BP、貝層直下のシルト層中の人骨か ら 1570~1510 cal BP、シルト層中の炭化物 4 点から 3550~2985 cal BP という年代がえられた。貝 層中の炭化木片 2 点、シルト層中に掘り込まれた墓坑から無文黒色土器とともに出土した人骨、 シルト層中の炭化物 4 点の年代は、層位的にみて問題のないものであった。

4-2. 土器の炭素含有量

土器片に関しては、炭素含有量を真空ラインのゲージで測り、これから炭素の含有率を計算した。また、AAA処理を施した試料と施さなかった試料での炭素含有率の変化、AAA処理における回収量の変化を計算した。結果を表2に示す。

黒色土器の炭素含有率は、硬い試料では処理前で 0.24~0.41%、処理後で 0.23~0.45%という値、 脆い試料では処理前で 0.25~0.48%、処理後で 0.05~0.17%という値であり、脆い試料は AAA 処理 により炭素の多くが失われる傾向が見られた。また、比較対照として使用した現代の黒色の土器 は、炭素含量は AAA 処理前が 0.64%、処理後が 0.51%で、比較した黒色土器に比べ高い炭素含有 率を示した。

赤色土器に関しては、土器表面から採取した試料の炭素含有率は、AAA 処理前で 0.06~0.46%、 処理後で 0.04~0.29%と、AAA 処理によって炭素の大部分が失われる傾向が見られた。試料内部 から採取した試料の炭素含有率は、処理前で 0.10~0.88%、処理後で 0.04~1.13%と、処理後の炭素 含有率が高くなる試料が見られた。

4-3. 安定同位体分析

人骨コラーゲンについて、ANCA-mass をもちいて安定同位体分析をおこなった。結果を表 1 に示す。人骨の δ^{13} C、 δ^{15} N はそれぞれ、 δ^{13} C は-21.4‰~-17.9‰という範囲に分散したのに対し、 δ^{15} N は 7.9‰~10.1‰という範囲に集中した。また、値の幅が大きかった δ^{13} C に関して地域別に 見た場合、これらの貝塚のうち最も下流に位置する、Cagayan 河西岸の Fabrica 貝塚で-18.7‰、5km 上流の Catugan 貝塚で-18.5‰、さらに 3km 上流の San Lorenzo 貝塚では-21.4‰、その対岸にある Catayauan 貝塚では-20.1~-17.9‰、その 2km 上流の Santa Maria 貝塚で-19.4‰と言う値を示した。 また、年代別に見た場合、1875~1695 cal BP の Catugan 貝塚および San Lorenzo 貝塚では-18.7‰お よび-21.4‰、1570~1510 cal BP の Santa Maria 貝塚では-19.4‰、1350~970 cal BP の Catayauan 貝塚 では-20.1~-17.9‰という値を示した。地域、年代ともに近かった Catugan 貝塚と San Lorenzo 貝塚 の δ^{13} C 値が大きく離れた。また Catayauan 貝塚内では、1 点が-17.9‰と、他の 3 点の-20.1~-19.4‰ という値と離れた結果を示した。

5. 考察

5-1. 年代測定について

Catayauan 貝塚 Conciso 地点: 暦年代較正に関して、較正曲線と¹⁴C 年代を図 3、較正年代と確 立分布を図 4 に示す。図中の色つきで示された部分は得られたヒストグラムのなかで可能性の高 い年代を選択した範囲である。動物骨に関しては、深さ 35cm と 70cm から出土した動物骨が 1070~960 cal BP、深さ 80cm~146cm から出土した動物骨が 1190~1055 cal BP という¹⁴C 年代を示 した。これについて、較正曲線と年代を比較すると、1200 cal BP から 1000 cal BP にかけては曲 線の揺らぎが大きく、そのため、動物骨に関して較正年代の幅が広くなっている。深さ 80cm~146cm の動物骨に関しては、1200 cal BP~1100 cal BP の範囲に較正曲線と¹⁴C 年代の交点 が集中しており、動物骨の年代はこの付近の値である可能性が高いと考えられる。また、 178cm~148cm の深さの墓坑から出土した 3 点の人骨が 1395~1175 cal BP という年代を示した。2 号墓と 3 号墓は貝層の第 4 層からの出土であるのに対し、1 号墓は第 5 層となる貝層下のシルト 層中から出土しているが、副葬品そして無文黒色土器が出土しており、貝層が形成されていた時 期のものであると考えられる。図 5 に Conciso 地点の層位図を示す。層位に関しては、地表面か ら 70cm 前後までの第 1 層、その下から 145cm 前後までの第 2~第 4 層の貝層、第 4 層最下層から 第5層の墓坑から出土した3点の人骨は、それぞれの層に対応して明瞭に分かれた年代を示した。

Santa Maria 貝塚: 暦年代較正に関して、較正曲線と¹⁴C年代を図5、6に示す。図6は貝層の 炭化物と人骨、図7はシルト層中の炭化物に対応した較正曲線である。また較正年代と確立分布 を図8に示す。¹⁴C年代については、貝層中の炭化物、シルト層中の墓抗の無文黒色土器伴出人 骨、シルト層中の炭化物は層位的にみて問題のないものであった。また、シルト層中より出土し た炭化物について3550~2985 cal BPという¹⁴C年代を示したが、この層からは無文赤色土器が伴 出している。これに対し、これまでの研究において、石灰岩台地上に位置する Magapit 貝塚の有 文赤色土器の伴出貝層より出土した炭化物の年代に関して2720±140 BP (N-5396)および2680 ±125 BP (N-5397) という¹⁴C年代値がすでに得られている。小川(1998,2000)によると、赤 色土器の変遷を有文から無文へと想定しているが、今回の測定結果は無文赤色土器の時代が有文 赤色土器の時代と前後するか、より古くさかのぼる可能性を示唆している。今後、この編年上の 問題を解決するため、新たな測定資料をマガビット貝塚から採取し、より精度の高い測定結果を もとにして、有文赤色土器の年代を再検討する必要がある。

各貝塚の較正暦年代値と土器編年、時代区分をまとめたものを図9に示す。河岸段丘上の貝塚 では通常、貝層からは黒色土器、その下のシルト層からは無文の赤色土器が出土している。今回 測定した人骨は、いずれも鉄器時代に属する無文黒色土器を含む貝層より出土したものである。 これまで、黒色土器の文化層の時代は 2000 BP~1000 BP の範囲と考えられていたが、人骨の¹⁴C 年代により、無文黒色土器の文化層のみでも 1900 cal BP~1000 cal BP の範囲にわたることが分か った。有文黒色土器の文化層もあることを考慮すると、黒色土器の文化層はより古くまでさかの ぼることが示唆される。

赤色土器に関しては、無文赤色土器伴出層である、Santa Maria 貝塚のシルト層中の炭化物より 3550~2985 cal BP という年代が得られた。これにより、赤色土器の文化層の時代は 3000 cal BP よ りも古く遡る事が示唆された。

なお、人骨の¹⁴C年代に関しては、海洋リザーバー効果の影響を考慮する必要がある。海洋 においては、低層水は長い年月をおいて循環しており、その炭酸イオンを起源とする炭素を取り 込む場合、年代は実際よりも古い値をとる。Lal-lo 貝塚群の人骨のる¹³Cは-21.4‰~-17.9‰であり、 若干ながら海洋リザーバー効果の影響を受け、実際よりも古い年代を示している可能性がある。 人間の場合、海洋リザーバー効果の影響は摂取した水産資源の種類と量により変化する。この効 果を補正するためには、遺跡の同一層位から出土している魚骨・海棲動物の骨と陸上動物の骨の ¹⁴C年代を比較してその間の年代差を求め、人骨の食性分析をおこなって海洋リザーバー効果の 影響を割り出す必要がある。本研究においては、今後、食性分析のための河川を含めた生態系に おける安定同位体の調査、および、出土遺物の¹⁴C年代を用いてのリザーバー効果の検討をおこ なう。

5-2. 土器の炭素含有量について

黒色土器に関しては、脆い土器は AAA 処理による炭素の消失が大きい傾向が見られたのに対

し、硬い土器は炭素含有量の変化があまり見られなかった。また、比較対照として用いた San Nicolas 産の現代の黒色の土器は、AAA 処理前、処理後ともに黒色土器に比べ高い炭素含有率を示した。これが、作られて時間がたっておらず、まだ多くの炭素が残っているためであるとするならば、遺跡出土の黒色土器、劣化が進み脆くなった土器ほど炭素含有量は少なくなっている可能性がある。これについては、今後も現代のものを含めた土器の炭素含量を調べて確認する必要がある。

赤色土器に関しては、土器表面は AAA 処理によってほとんどの炭素が消失したのに対し、土 器内部は処理後も高い炭素含有率を示す試料が多かった。なお、残存率が 100%を超えるものが あるが、これは AAA 処理の際、有機成分よりも無機成分の方が多く消失したことにより、AAA 処理後の方が処理前よりも炭素含有率が高くなった結果であると考えられる。土器内部は多くの 炭素が含まれているが、これらの試料には土壌中のフミン等の AAA 処理で除去できなかった有 機物が内部に浸透し残っている可能性が高いと考えられる。

以上のことより、黒色土器は、硬い土器片に関しては AAA 処理による炭素の消失が少なく、 十分な量が有れば年代測定試料として利用可能であると考えられる。今後、これらの黒色土器試 料に関して年代測定をおこない、実際に黒色土器伴出層から出土した他の遺物の年代と比較して 妥当な年代が得られるかどうかを確認したいと考えている。

5-3. 食性分析について

図 10 に、今回分析をおこなった Lal-lo 貝塚群の人骨の同位体比と、日本の関東縄文貝塚人骨の同位体比を比較として図示した。Lal-lo 貝塚群の人骨はる¹³C が-21.4‰~-17.9‰、る¹⁵N が 7.9‰ ~10.1‰という範囲を示しており、San Lorenzo 貝塚出土の人骨の値を除いて、ほぼ縄文人の食性と近似した値であった。このことにより、当時の人々は主要なタンパク源の 20%~30%ほどを海洋生態系に依存していたと推定される。

今回測定した Lal-lo 貝塚群の人骨のうち、San Lorenzo 貝塚出土の人骨のδ¹³C 値は-21.4‰と、 他の人骨に比べ陸上資源の依存が強い傾向を示した。

一方、縄文貝塚人骨の例からも明らかなように、一般に δ^{13} C と δ^{15} N は回帰直線状の相関がみ られ、 δ^{13} C が負に傾くほど δ^{15} N は低くなる傾向が見られるが、この San Lorenzo 貝塚出土の人 骨の δ^{15} N 値は 9.0%という値を示していることから、他の人骨よりも動物性タンパクを多く摂取 していたと推測される。この貝塚はもとは墓域であったと考えられており、今後、出土した他の 人骨も同様に分析して検討をおこないたい。また Catayauan 貝塚内では、1 点の δ^{13} C 値が-17.9% と、他の 3 点の-20.1~-19.4%という値と離れた結果を示した。海洋資源への依存が強いことが考 えられるが、 δ^{15} N 値は 7.9%と他の人骨よりも低い。海洋資源同様に高い δ^{13} C 値を示す C4 植 物への依存の可能性に関しては、この地域では雑穀を含めた穀物栽培は確認されておらず、現在 調査中である。

6. 謝辞

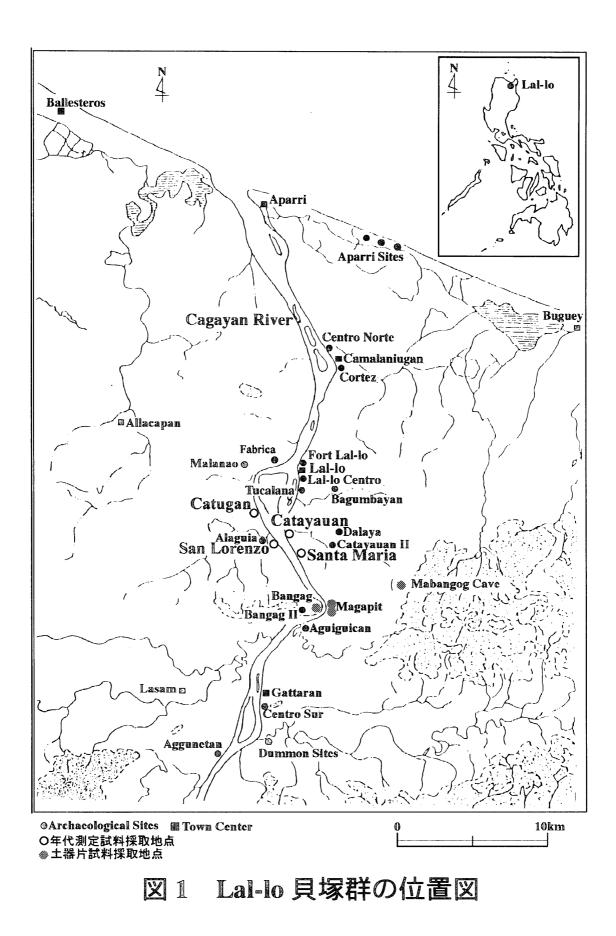
本研究を進めるにあたり、名古屋大学年代測定総合研究センターの皆様に様々なご教示、ご協力を頂いた。また、試料を提供していただいたフィリピン国立博物館考古学部門の Wilfredo P. Ronquillo 部長をはじめ、博物館のスタッフの皆様には大変お世話になった。またこの研究には、 文部省科学研究費補助金(国際学術研究、代表者:小川英文、課題番号:07041006)の一部を使用した。誌面に記して謝意を表する。

参考文献

- 青柳洋治, Aguilera, M. L. Jr., 小川英文, 田中和彦 (1988) ラロ貝塚群の発掘.「*上智アジア学*」, 6: 63-104.
- 青柳洋治, Aguilera, M. L. Jr., 小川英文, 田中和彦 (1991) ラロ貝塚群の発掘 (3). 「*上智アジ* ア学」, 9: 49-63.
- 有田陽子, 中井信之, 中村俊夫, 亀井節夫, 秋山雅彦, 沢田健 (1990) 哺乳類化石のコラーゲ ン抽出法とその AMS 法による¹⁴C 年代測定. 名古屋大学古川総合研究資料館報告, 6: 45-54.
- Ishibashi, H., Takeuchi, T., White, I. and Koike. H. (1999) δ^{15} N and δ^{13} C measurements from the African elephant, *Loxodonta africana*, used for ivory sourcing. *Bulletin of the Graduate School of Social and Cultural Studies, Kyushu University*, 5: 1-8.
- Chisholm, B., Koike, H. (1996) Reconstructing Prehistoric Japanese Diet Using Stable Isotopic Analysis. International Symposium 1996. 199-222. International Research Center for Japanese Studies.
- de la Torre, A. A. (2000) Preliminary report of the Lal-lo, Cagayan Archaeological Project: Clemente Irigayen Property Site (II-1995-O), Sta. Maria, Lal-lo, Cagayan. 「東南アジア考古学」, 20: 67-110.
- Garong, A. M. and Toizumi, T. (2000) The Archaeological Excavation of the Shell Midden Sites in Lal-lo, Cagayan. ラロ貝塚群の発掘調査一東南アジア島嶼部先史時代の考古学的調査一. 平 成7 年度. 平成 9 年度科学研究費補助金 (国際学術研究)研究成果報告書, 50-78. 東京外国 語大学.
- Godwin, H. (1962) Half-life of Radio Carbon. Nature, 195: 984.
- Kitagawa, H., Masuzawa, T., Nakamura, T. and Matsumoto, E. (1993) A batch preparation method for graphite targets with low background for AMS¹⁴C measurements. *Radiocarbon*, 35: 295-300.

小池裕子(2000)食糧資源環境と人類.「環境と人類」,31-60.

- コロネル・マルクス (1999) フィリピン・ルソン島北東部ラロ貝塚群文化の変遷. 九州大学文 学部卒業論文. 28p.
- 武藤宏男 (2000) 加速器質量分析計による化石骨の C-14 年代測定-試料前処理法の検討-.名 古屋大学人間情報研究科修士論文, 61p.

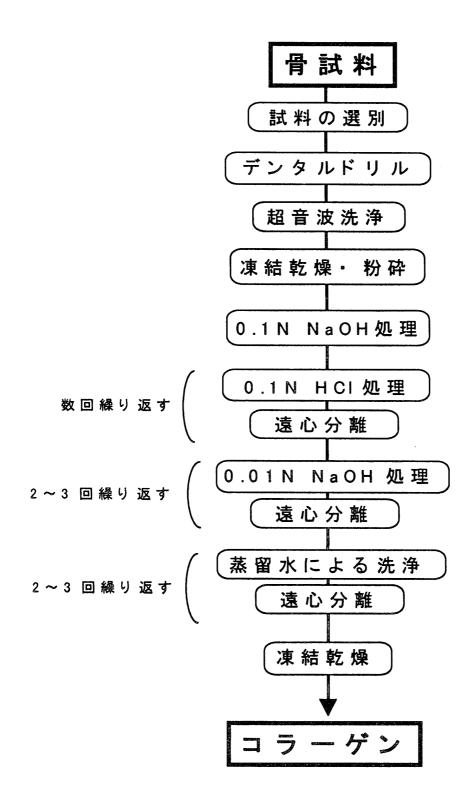
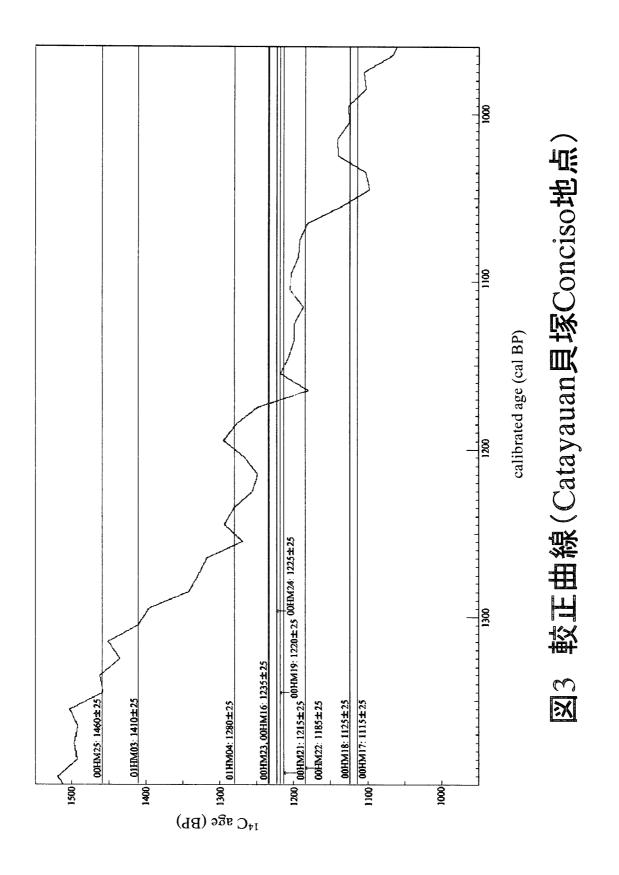
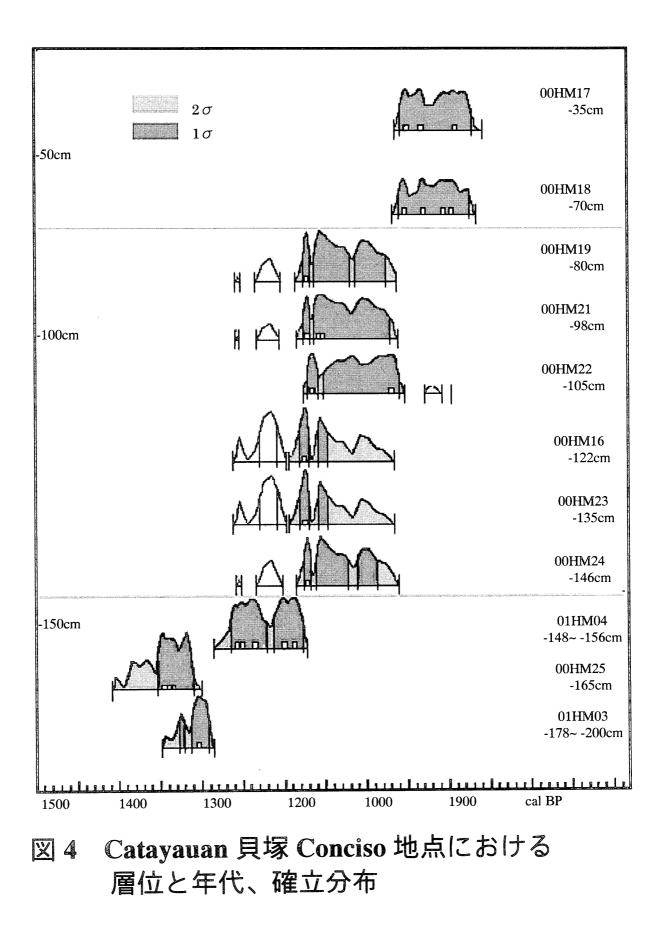
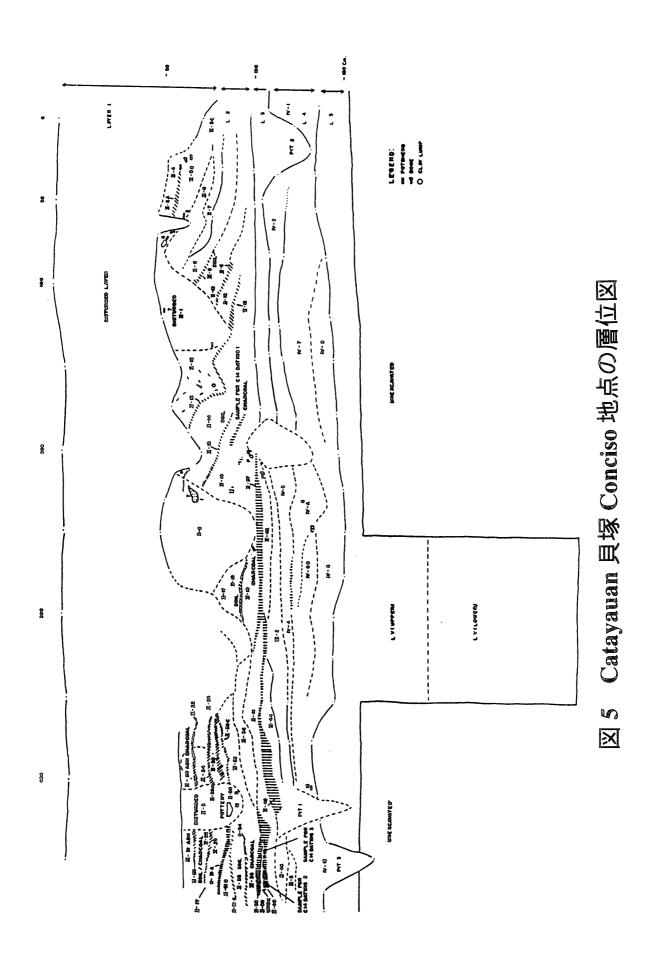
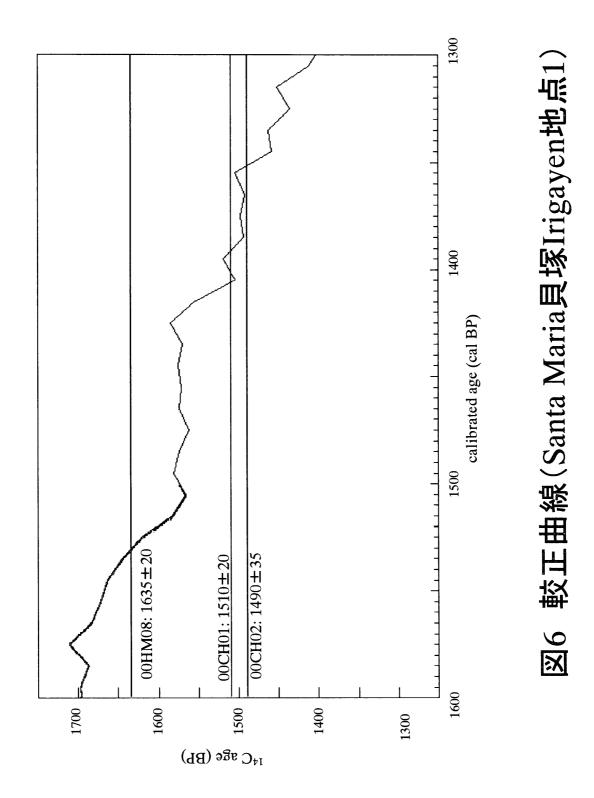

- Nakamura, T., Nakai, N., Sakase, T., Kimura, M., Ohishi, S., Taniguchi, M. and Yoshioka, S. (1985) Direct Detection of Radiocarbon Using Accelerator Techniques and Its Application to Age Measurements. *Japanese Journal of Applied Physics*, 24: 1716-1723.
- 中村俊夫 (1995a) タンデトロン加速器質量分析計による¹⁴C年代測定. 名古屋大学加速器質 量分析機業績報告書(VI): 234-250.
- 中村俊夫, (1995b), 加速器質量分析 (AMS) 法による¹⁴C 年代測定の高精度化および正確度向 上の検討. *第四紀研究*, 34: 171-183.
- 中村俊夫 (2000) ¹⁴C 年代から暦年代への較正. 「*日本先史時代の¹⁴C 年代*」: 21-40. 日本第四 紀学会.
- Nakamura, T., Niu, E., Oda, H., Ikeda, A., Minami, M., Takahashi, H., Adachi, M., Palis, L., Gottdang, A. and Suya, N. (2000) The HVEE Tandetron AMS system at Nagoya University. *Nuci. Instr. and Meth. in Phis. Res.* B, 172: 52-57.
- 中村俊夫 (2001) 放射性炭素年代とその高精度化.「第四紀研究」40(6):445-459.
- 小川英文 (1997) 貝塚洪水伝説-フィリピン、ルソン島北部カガヤン河下流域における貝採集民 の民族考古学-. 「東南アジア考古学」, 17: 119-166.
- Ogawa, H. (1998) Problems and Hypothesis on the Prehistoric Lal-lo, Northern Luzon, Philippines Archaeological Study on the Prehistoric Independence between Hunter-Gatherers and Farmers in the Tropical Rain Forest -. 「東南アジア考古学」, 18: 123-166.
- Ogawa, H. (1999) Archaeological Research on the Prehistoric Independent Relationships between Hunter-Gatherers and Lowlanders – Preliminary Report on the Excavations of Mabangog Cave, San Mariano, Lal-lo, Cagayan, Northern Luzon, Philippines -. 「東南アジア考古学」, 19: 93-114.
- Stuiver, M. and Pearson, G., (1993) High-precision bidecadal calibration of the radiocarbon time scale, AD1950-500 BC and 2500-6000 BC. *Radiocarbon*, 35: 1-23.
- Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, F. G., v.d. Plicht, J. and Spurk, M. (1998) : INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. *Radiocarbon*, 40 (1) : 1041-1083.
- 田中和彦 (1997) カトゥガン (Catugan) 貝塚の発掘調査. 「東南アジア考古学」, 17: 209-226.
- 田中和彦 (1998) サン・ロレンソ III 貝塚 (シリバン遺跡)の発掘調査とその問題. 「東南アジ ア考古学」, 18: 263-287.
- Tanaka, K. (1999) The Archaeological Excavation of Bangag I Shell-midden, Lal-lo, Cagayan, Philippines. Journal of Southeast Asian Archaeology, 19: 71-91.

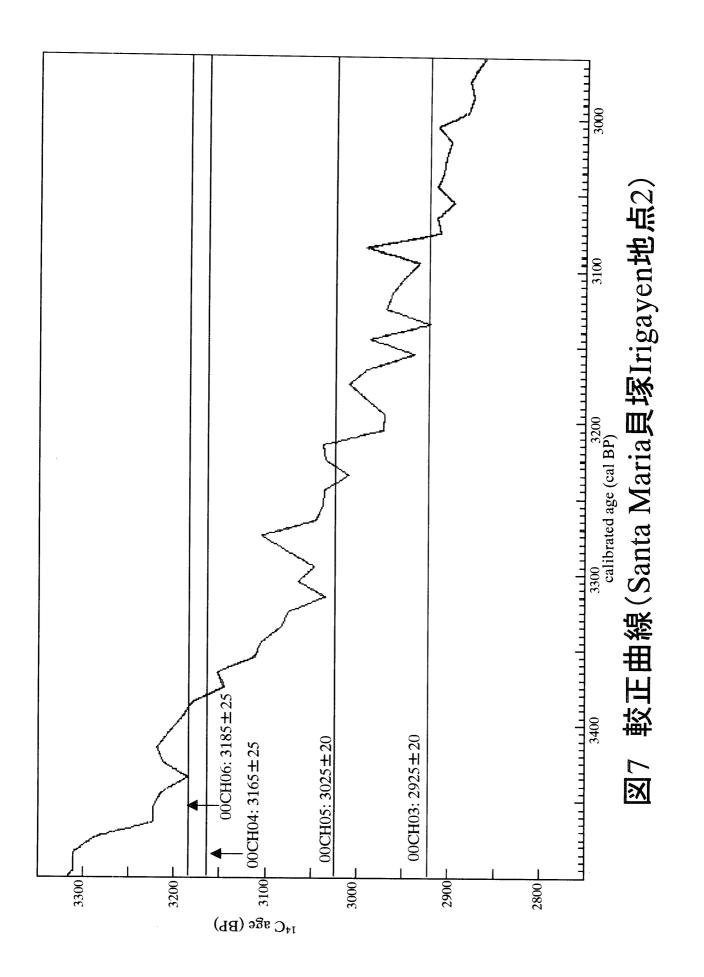
東南アジア考古学会(1994)「貝塚データベース」東南アジア考古学会(編)

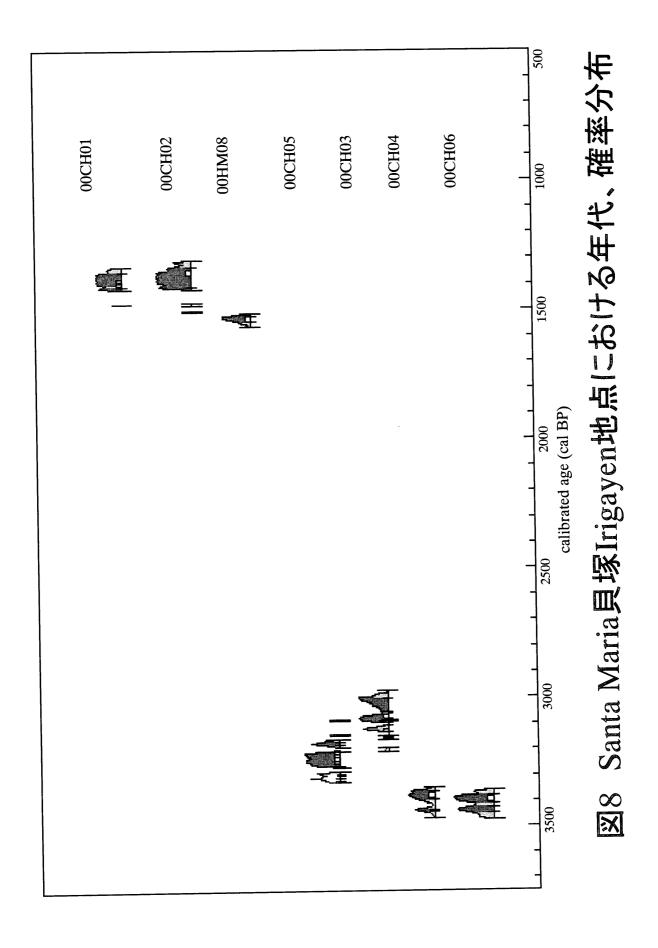
¹³ C、δ ¹⁵ Nと ¹⁴ C年代	8 ¹³ C、8 ¹⁵ Nと ¹⁴ C年代		
	ر ک	13へ。15×11-14へたい	

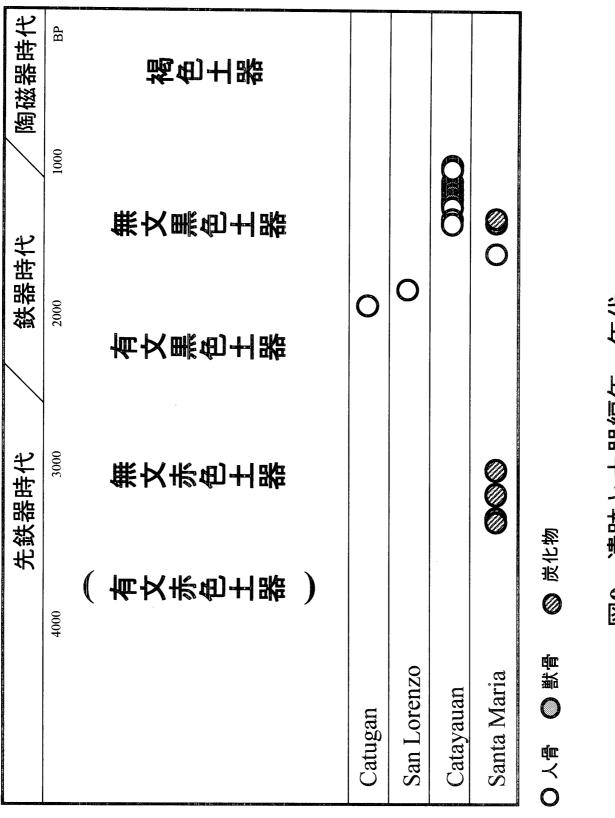
1477	表1	δ^{13} C, δ^{1}	表1 8 ¹³ C、8 ¹⁵ Nと ¹⁴ C年代												
la	tho No.	labo No. shell midden site	site	sample	accession No.	grid	depth (cm)	feature	C/N	8 ¹³ C(%0)/ANCA	8 ¹⁵ N(%0)	¹⁴ C age (BP)	calibrated age (cal BP)	e (cal BP)	Nagoya-code
10	1HM24	01HM24 Fabrica	Conrado Pasqua	human bone II-2000-6	II-2000-Q-351	S2W2	349-360		2.9	-18.7	10.0	•			•
5 0	0HM04	2 00HM04 Catugan	Marcerina Dombreque	human bone II-95-Q4	II-95-Q4-12	•	20-60		2.8	-18.5	9.2	1880+20	1875-1735	100.0%	NUTA2-757
30	1HM02	3 01HM02 San Lorenzo Siliban		human bone II-96-02	II-96-02		80-100	Brial #1	2.8	-21.4	9.0	1815+25	1820-1695	93.9%	NUTA2-2503
4	0HM07	4 00HM07 Catayauan	Fausto Sison	human bone II-95-P-:	II-95-P-212	N5W3		Brial #1(Pit II)	3.0	-19.4	10.1	1145+20	1090-970	100.0%	NUTA2-903
<u>5</u>	0HM16	5 00HM16 Catayauan	Conciso	animal bone	II-96-V2-4149	NSE3	135	1	2.8	-20.8	6.6	1240±25	1190-1070	66.5%	NUTA2-1851
90	6 00HM17	Catayauan	Conciso	animal bone	animal bone II-96-V2-1058	NSE3	35	,	3.0	-20.9	7.4	1115±25	1060-960	100.0%	NUTA2-1852
7 0	0HM18	7 00HM18 Catayauan	Conciso	animal bone	animal bone II-96-V2-1993	NSE3	70	-	2.9	-14.8	6.5	1125±25	1070-960	99.5%	NUTA2-1853
8	0HM19	8 00HM19 Catayauan	Conciso	animal bone II-96-V2	II-96-V2-2038	NSE3	80		2.8	-20.8	8.1	1220±25	1185-1060	88.1%	NUTA2-1854
0	0HM21	9 00HM21 Catavauan	Conciso	animal bone II-96-V2	II-96-V2-2466	N5E3	98	•	2.9	-22.2	9.2	1215±25	1180-1060	92.1%	NUTA2-1855
10 00	0HM22	10 00HM22 Catavauan	Conciso	animal bone	animal bone II-96-V2-2508	N5E3	105	ŀ	2.9	-17.1	6.5	1185±25	1175-1055	95.2%	NUTA2-1858
1	0HM23	11 00HM23 Catayauan	Conciso	animal bone	animal bone II-96-V2-3949	NSE3	122		2.8	-12.3	8.0	1240±25	1190-1070	64.9%	NUTA2-1859
12 00	0HM24	12 00HM24 Catayauan	Conciso	animal bone	II-96-V2-5284	NSE3	146		2.8	-22.6	7.4	1225±25	1185-1065	85.7%	NUTA2-1860
13 0	1HM04	13 01HM04 Catayauan	Conciso	human bone II-96-V2	II-96-V2-6355	N6E3	148-156	Brial #3	2.8	-19.9	9.0	1280+25	1275-1175	100.0%	NUTA2-2508
14 0	0HM25	14 00HM25 Catavauan	Conciso	human bone II-96-V2	II-96-V2-6327	NSE3	165	Brial #2	3.0	-20.1	9.7	1460+25	1395-1305	96.8%	NUTA2-1861
15 0	1HM03	15 01HM03 Catayauan	Conciso	human bone II-96-V2	II-96-V2-6354	N6E3	178-200	Brial #1	2.8	-17.9	7.9	1410+25	1350-1280	100.0%	NUTA2-2504
16 00	16 00CH01	Santa Maria	Clemente Iriga yen	charcoal	II-95-0-8695	N6W8	,	PitD	,	. 1	ı	1510±20	1420-1325	95.5%	NUTA2-910
17 00	17 00CH02	Santa Maria	Santa Maria Clemente Irigayen	charcoal	II-95-0-8700	N4W9	,	feature #2		,	,	1490±35	1420-1305	93.5%	NUTA2-911
18 0	80MH0	Santa Maria	18 00HM08 Santa Maria Clemente Irigayen	human bone	human bone II-95-0-9596	N6W1	80-102	Brial #1	3.0	-19.4	8.8	1635±20	1570-1510	82.7%	NUTA2-904
19 00	0CH05	Santa Maria	19 00CH05 Santa Maria Clemente Irigayen	charcoal	II-95-0-9598	N6W1	80-80.5		-	1	,	3025±20	3270-3160	73.9%	NUTA2-914
20 00	0CH03	Santa Maria	20 00CH03 Santa Maria Clemente Irigayen	charcoal	II-95-0-8705	N6W8	111	1	-	1	,	2925±20	3140-2985	89.8%	NUTA2-912
21 00	0CH04	Santa Maria	21 00CH04 Santa Maria Clemente Irigayen	charcoal	II-95-0-8706	N3W6	135		ı		-	3165±25	3455-3345	97.9%	NUTA2-913
22 0	22 00CH06	Santa Maria	Clemente Irigayen	charcoal	II-95-0-9601	N3W6	132-135.5	-	1		-	3185±25	3455-3360	94.1%	NUTA2-917
Ì	人骨武料	は太宇で示	L t.o												

	表2 土		教がの	土器片試料の炭素含有										
							AAA	AAA処理前	AAA	AAA処理後	AAA処理による	AAA処理による試料粉末の残存率	よる試料粉ラ	Fの残存率
labo No.	料料	種類	部位	黒色部分	使用部位	硬さし	C含量(mg)	C含有率(%)	C含量(mg)	C含有率(%)	炭素残存率(%)	処理量(mg)	残量(mg)	残存率(%)
01PO18	San Nicoras	現代黒色	口縁部	全体が黒色	全体	硬い	3.18	0.64	2.55	0.51	80.1	3290	1200	36.5
01PO12A					内側褐色部		2.38	0.48	0.32	0.06	2.6	1939	577	29.8
01PO12B	Bangag 01	有文黒色	1	I	内部黑色部	船い	1.26	0.25	0.24	0.05	1.3	1813	474	26.1
01PO13	Bangag 02	有文黒色	口縁部	全体が黒色	全体	硬い	2.73	0.41	1.77	0.31	75.9	2600	1375	52.9
01PO14	Bangag 03	有文黑色	底部	全体が黒色	全体	硬い	1.28	0.24	1.30	0.23	96.4	3710	1324	35.7
01PO15	Bangag 04	有文黒色	1	内面に黒色部	内部	船い	2.12	0.42	0.86	0.17	40.0	2186	1015	46.4
01PO16	Bangag 05	有文黒色	I	全体が黒色	全体	硬い	I	ı	2.28	0.45	I	1	1	1
01PO17	Bangag 06	有文黒色	1	全体が黒色	全体	船い	I	-	0.53	<u>0.09</u>	L	t	1	1
01PO01A					表面		0.12	0.06	0.10	0.05	83.5	1340	541	40.4
01PO01B	Magapit 01	有文赤色	1	白色塗料付き	内部	₩	0.48	0.10	0.20	0.04	40.9	1340	559	41.7
01PO02	Magapit 02	有文赤色	1	内部に黒色部	内部	料	2.18	0.38	1.58	0.28	74.0	2365	675	28.5
01PO03A					表面		1.65	0.33	0.20	0.04	12.2	2209	856	38.8
01PO03B	Magapit 03	有文赤色	口縁部	焼きムラあり	焼きムラ	記い	1.87	0.37	3.43	0.58	156.8	1527	588	38.5
01PO03C					内部		3.20	0.64	4.08	0.82	127.4	1993	811	40.7
01PO04A					表面		1.10	0.22	0.17	0.05	22.4	1790	343	19.2
01PO04B	Magapit 04	有文赤色	底部	焦げつきあり	内部	褂	0.86	0.17	0.55	0.19	113.0	1088	282	25.9
01PO05A					表面		0.92	0.46	0.17	0.08	17.9	1160	486	41.9
01PO05B	Magapit 05	有文赤色	口緣部	内部に黒色部	内部	脆い	3.17	0.63	5.66	1.13	178.2	1350	550	40.7
01PO08A					表面		0.56	0.28	0.17	0.04	13.0	1240	464	37.4
01PO08B	Mabangog 01	無文赤色	薄い破片	焦げ	内部	⇒	1.20	0.24	0.55	0.10	41.3	1280	556	43.4
01PO09	Mabangog 02	無文赤色	薄い破片	焦げ	全体	脆い	7.68	1.55	0.05	0.01	0.7	696	421	43.4
01PO10A					表面		0.73	0.36	0.70	0.29	78.6	760	264	32.4
01PO10B	Mabangog 03 無文赤色	無文赤色	口縁部	焦げ	内部	湗	4.40	0.88	4.08	0.82	92.6	2290	739	32.3
01PO11	Mabangog 04 無文赤色	無文赤色	口縁部		内部	湖	2.86	0.54	1.29	0.33	61.1	1175	391	33.3


図2 コラーゲン抽出法





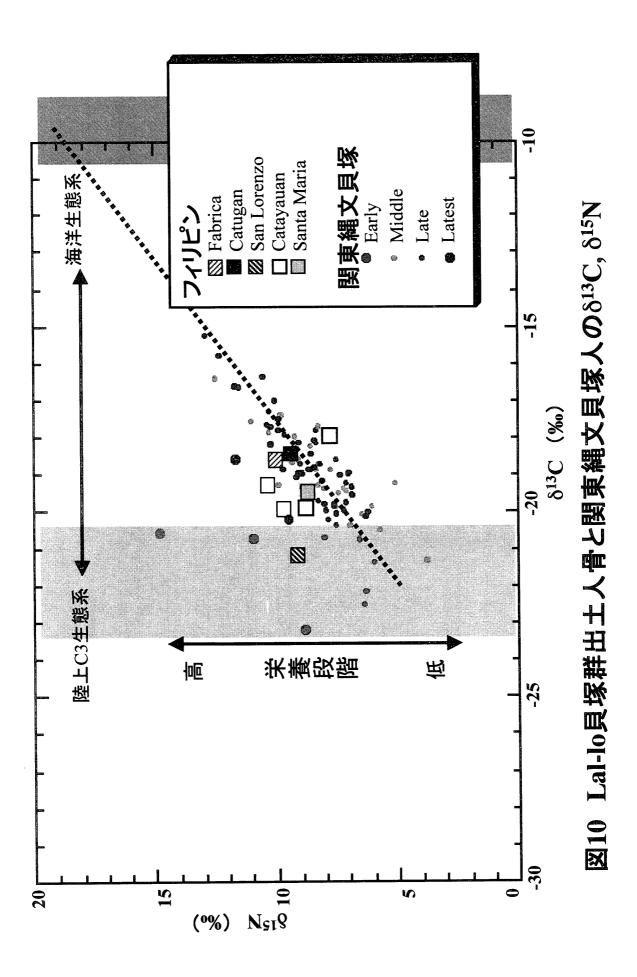


図9 遺跡と土器編年、年代

AMS ¹⁴C dating and dietary analysis for Lallo shell midden sites, Philippines.

Shozo MIHARA¹⁾, Mitsuru OKUNO²⁾, Hidefumi OGAWA³⁾, Kazuhiko TANAKA⁴⁾, Toshio NAKAMURA⁵⁾ and Hiroko KOIKE¹⁾

- 1) Graduate School of Social and Cultural Studies, Kyushu University
- 2) Faculty of Science, Fukuoka University
- 3) Dept. of Philippine Studies, Tokyo University of Foreign Studies
- 4) Keiai University
- 5) Chronological Research Center, Nagoya University

Cagayan River, running through Northeast Luzon, is one of the largest rivers in the Philippines. The lower Cagayan basin hasLal-lo shell midden sites, one of the biggest shell middens in Southeast Asia. In this area, shell middens on the river terrace produce Black Pottery belonging to the Iron Age, and the silt layersbelow the shell layer and also shell middens on the limestone hills produce Red Pottery belonging to the Pre-Iron Age. Chronologically it is thought that both Black Pottery and Red Pottery change from a decorated (I) type to a non-decorated (II) type.

We presented some dating results at the last annual report. The age of the Black Pottery II phase is from 1900 cal BP to 1000 cal BP, and the Red Pottery II phase is older than 3000 cal BP. To make a detailed chronology, we analyzed four human bones from Catayauan and San Lorenzo. As a result of ¹⁴C dating, one human bone from San Lorenzo was from 1800 cal BP to 1700 cal BP, three human bones from Catayauan were from 1400 cal BP to 1200 cal BP. They belong to the Black Pottery II phase.

For dietary analysis, eight human bones and one human bone from Fabrica were analyzed for their δ^{13} C and δ^{15} N values. δ^{13} C and δ^{15} N values from bone collagen provide useful information about food sources, proportions of marine and terrestrial food groups, and their trophic levels as protein sources. Our analytical results show that nine humans were similar to Japanese Jomon people in the Kanto area. And they depended on from 20% to 30% of marine food source.

And To make a chronology for the pottery, it is important to know about the age of the pots themselves. So we analyzed the carbon content of the pots to determine their utility as samples for ¹⁴C dating. Though there were differences, the Black potteries had enough carbon for AMS dating.